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A better understanding of the transition process in open flows can be obtained 
through identification of the possible asymptotic response states in the flow. In  the 
present work, the asymptotic states in laminar wakes behind circular cylinders at low 
supercritical Reynolds numbers are investigated. Direct numerical simulation of the 
flow is performed, using spectral-element techniques. Naturally produced wakes, and 
periodically forced wakes are considered separately. 

It is shown that, in the absence of external forcing, a periodic state is obtained, the 
frequency of which is selected by the absolute instability of the time-average flow. 
The non-dimensional frequency of the vortex street (Strouhal number) is a 
continuous function of the Reynolds number. In periodically forced wakes, however, 
non-periodic states are also possible, resulting from the bifurcation of the natural 
periodic state. The response of forced wakes can be characterized as : (i) lock-in, if the 
dominant frequency in the wake equals the excitation frequency, or (ii) non-lock-in, 
when the dominant frequency in the wake equals the Strouhal frequency. Both types 
of response can be periodic or quasi-periodic, depending on the combination of the 
amplitude and frequency of the forcing. At the boundary separating the two types 
of response transitional states develop, which are found to exhibit a low-order 
chaotic behaviour. Finally, all states resulting from the bifurcation of the natural 
state can be represented in a two-parameter space inside ‘resonant horn ’ type of 
regions. 

1. Introduction 
There has recently been a renewed interest in the formation of vortex streets in the 

wake of bluff objects and the physical mechanisms dictating their states. The flow 
past a circular cylinder, in particular, has served for nearly a century now as a model 
for fundamental studies of external flows. Morkovin (1964) has aptly characterized 
the flow past a cylinder as ‘a kaleidoscope of challenging fluid phenomena’, referring 
to the variety of fluid structures and different flow regimes that are observed in this 
flow. Since then, a vast volume of literature has been added to the subject, mostly 
concerning the formation of the wake and the frequency selection process. 

To the list of long-conflicting experimental results of Tritton (1959, 1971), Gaster 
(1969), and Berger & Wille (1972) about the frequency selection in the wake of circular 
cylinders, the findings of Friehe (1980), Sreenivasan (1985) and Van Atta & Gharib 
(1987) have been added more recently. An attempt was made in the more recent 
studies to explain discontinuities in the Strouhal number (st) versus Reynolds 
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number (Re) relationship, first reported by Tritton (1959), in the light of 
contemporary theories relating the development of turbulence in fluids to the 
presence of strange attractors (Ruelle & Takens 1971). In  his controversial paper, 
Sreenivasan (1985) attributed the discontinuities in the Strouhal-versus-Reynolds 
number relationship to the presence of chaotic patterns in the wake of the cylinder. 
Sreenivasan (1985) claimed that such patterns develop even for Reynolds numbers 
below 100, for which the wake is still laminar (Bloor 1964). He described the 
formation of chaotic patterns as following the theoretical scenario suggested by 
Newhouse, Ruelle & Takens (1978) (usually referred to as the ‘RTN ’ scenario). The 
results of Sreenivasan (1985), however, were recently disputed by Van Atta & Gharib 
(1987). They demonstrated convincingly that the chaotic state of the flow observed 
by Sreenivasan (1985), and the discontinuities observed by Tritton (1959)’ were in 
fact due to aeroelasting coupling between the vortex wake and the cylinder vibration 
modes. According to Van Atta & Gharib (1987), chaotic states in a laminar wake do 
not result from purely fluid-mechanical origins; they can only be created from 
external forcing, or aeroelastic coupling, following the scenario of ‘pattern 
competition’ proposed by Ciliberto & Gollub (1984) in the context of a different 
physical problem. 

The fact remains that quasi-periodic and chaotic states, whether due to purely 
fluid-mechanial phenomena or aeroelastic coupling, are possible in low-Reynolds- 
number flows. The origin and development of such patterns are worth investigating, 
because they can offer significant insight into the transition process in laminar flows. 
Prom the application point of view, identification of states in ‘open’ flows is 
important for flow-control problems. The goal in flow-control problems may be 
cancellation of unsteady patterns, like in vibration-suppression applications, or 
reinforcement of unsteady patterns, like in transport enhancement applications. For 
both types of problems, choosing the appropriate control device can be guided from 
investigations regarding the state selection process in the flow. 

In this work, an attempt is made to identify the asympotic states that can develop 
in laminar wakes. The investigation consists of two parts: (a )  formation of vortex 
streets in absence of external forcing, and ( b )  development of asymptotic response 
states under periodic external forcing. The approach is that of a direct numerical 
simulation using the spectral-element method (Patera 1984), and (Karniadakis, 
Bullister & Patera 1985) a high-order, weighted residual technique, which combines 
the accuracy of spectral methods with the flexibility in geometry of finite-element 
schemes. The success of the spectral-element method in accurately resolving the fine 
structure of transitional flows in complex geometries in previous studies (Ghaddar 
et al. 1986; Karniadakis, Mikic & Patera 1988) recommended its use in the present 
investigation. 

In $2 of this paper the governing equations are presented, and the spectral-element 
method is briefly discussed. I n  $ 3  the unforced response of laminar wakes is 
investigated. For a fixed value of the Reynolds number (Re = loo), the development 
of the vortex street as a function of time is followed in detail. Computer-aided flow 
visualizations and power-spectral-density plots are used to analyse the natural 
response. I n  $4, the response of the wake a t  the same Reynolds number subject to 
a localized in space, time-harmonic forcing is investigated. The amplitude of the 
forcing is kept constant, while the frequency is varied from half to three times the 
shedding frequency ; for each case, the asymptotic state of the wake is determined by 
using power-spectral-density and phase-plane plots. All calculations reported in this 
paper have been carried out for a fixed amplitude of forcing ; based on these results, 
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FIGURE 1 .  Geometry definition for flow past a cylinder in an unconfined domain. 

however, we can qualitatively infer the complete form of the state-selection diagram 
in the amplitude-frequency plane, as discussed in $5. Finally, in $6 the implications 
of our results for flow-control applications are summarized. 

2. Problem formulation and numerical methods 
2.1. Governing equations 

We consider here the flow past a circular cylinder in the domain depicted in figure 
1, with the boundary dD composed of the solid walls alls, and the inflow/outflow 
boundaries aD1 U aD0. A Cartesian system of coordinates is used, the origin of which 
coincides with the centre of the cylinder, and the axes x and y are parallel and normal 
to the oncoming flow respectively, with unit vectors denoted by 3 and 9. The 
governing equations for the flow are the incompressible Navier-Stokes and 
continuity equations, 

vt = vxo-Vl7+Rec1V2v+F, ( l a )  

v.v = 0, ( I b )  

where v ( x )  (=  u3+vy) is the velocity, o = V x v is the vorticity, l7 = p++u-  v is the 
pressure head, with p the pressure, and Re = U,D/v is the Reynolds number. Here 
U, is the free-stream velocity, D the cylinder diameter, and v the kinematic viscosity 
of the fluid. All velocities and lengths are scaled by U, and by the cylinder radius R 
respectively. The term F on the right-hand side of (1 a) is an external forcing, which 
in our investigation is a localized forcing harmonic in time, as discussed further in 
§ 4. 

The boundary conditions on v for a stationary cylinder are, 

v = O  on aDS, ( 2 4  

v*U,f  as IxI*co, ( 2 b )  

where 8Ds is the cylinder surface. 
Finally, in order to investigate the effects of the boundary conditions on the 

numerical results, periodicity conditions in the y-direction, at the sides of the 
computational domain, were used instead of the boundary conditions in (2 b) .  This 

15 FLM 19Q 
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simulation corresponded to flow past an infinite array of cylinders placed 
perpendicular to the flow. 

2.2. Temporal discretization 
To discretize the Navier-Stokes equations (1) in time, we use a fractional-step 
(splitting) method (Korczak & Patera 1986). The fractional steps involve (i) the 
nonlinear advection and time-dependent forcing terms ; (ii) the pressure to enforce 
incompressibility ; and (iii) the viscous terms to enforce the Dirichlet, boundary 
condition. 

The semi-discrete equations for vn(x)  = v ( x ,  nAt) are then: step (i), 
2 

;n+l- v n - - At Z p q ( v ~ ~ ) n - *  in D, 
q=o 

(3) 

followed by the pressure step (ii), 

-WlIAt in D ,  ( 4 a )  

V217 = V ( P + l / A t )  in D,  ( 4 b )  

i n + ,  - ;n+l = 

where ii is the unit vector, normal to  the boundary. 
Finally the viscous corrections using a Crank-Nicolson scheme is, step (iii), 

15) 

Here Po = 23/12, PI = - 16/12, and PZ = 5/12 are the third-order Adams-Bashforth 
coefficients in step (i). Also, h is an incompressibility parameter defined as A = 
jj 6 dx/jj dx with the integration carried out over aD, u Do. This value of h corresponds 
to a minimum adjustment required to the boundary velocity ii obtained at the end of 
the fractional step (i) ,  such that the solvability condition for the pressure is satisfied. 
It represents a projection of the mass flux at the boundaries to an incompressible 
field. This projection ensures that incompressibility is enforced everywhere in the 
domain D U i3D, with the 6-field being projected to a divergence-free space a t  the 
domain interior D, through the &field in the second substep. 

The overall time accuracy of the scheme is dictated by the Stokes part, which has 
been shown (Korczak & Patera 1986) to  be O(At ) ,  even though the local error in each 
substep is of higher order. This is because the operators involved in the three 
substeps do not commute. Although of first order, the fractional-step scheme has the 
important advantage of reducing all implicit operations to  uncoupled standard 
Helmholtz equations in steps (ii) and (iii). It is the discretization of the Helmholtz 
operator that we briefly discuss next. 

Un+'-&tl = 1 2At Re-' V2( vn+l + vn)  in D. 

2.3. Spatial discretization 
For the spatial discretization of (1)  we use the spectral-element method, first 
introduced by Patera (1984). As the fully discrete solution of the Navier-Stokes 
equations is given elsewhere in detail (Karniadakis et al. 1985; Korczak & Patera 
1986) only the main points will be discussed here. In the isoparametric spectral- 
element method the computational domain is broken up into curvilinear quadri- 
laterals (elements) ; within each element geometry, velocity and pressure are 
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expanded in tensor product bases in terms of the local coordinates ( r ,  s). I n  element 
k, we then have 

N N  N 

[x, u, 4 = C C [x, 0, IT]$hi(r) hj(s) = C [x, u, n l f g t ( r ,  s), (6) 

where the h,(z) are the Nth-order Lagrangian interpolants through the Gauss- 
Lobatto Chebyshev points and g,(r,s) are defined by (6 ) .  A recent modification of 
the spectral-element method employs subparametric elements with the pressure 
interpolated using (N-  2)th order interpolants through Gauss-Lobatto Legendre 
points (Maday & Patera 1987). The choice of the collocation points is important for 
the accuracy of the numerical method and the collocation approximations. It has 
been shown (Korczak & Patera 1986), and (Rnrnquist & Patera 1987) that 
interpolations of the form of (6) result in exponential Convergence for infinitely 
smooth solutions. Furthermore, it was shown that the weak formulation employed 
for global decomposition preserves the spectral accuracy. I n  spectral-element methods 
convergence can be obtained by two different approaches : either by maintaining the 
order N of the interpolants constant and increasing the number of macro-elements 
K ,  or by keeping the number of macro-elements constant and increasing the order of 
the interpolants, with a corresponding increase of the number of collocation points, 
(N+l), for each element. It is the latter approach in discretization that leads to 
exponential convergence, whereas the former approach results in algebraic-only 
convergence, typical of finite-element schemes. Our numerical experiments have 
shown, however, that use of Chebyshev polynomials of order six or higher results in 
exponential convergence. 

To represent the convective contributions ( u x w )  of (1) we use a mixed 
collocation/Galerkin approach, and thus simply calculate the term ( u  x o) a t  each 
collocation point (ij). For the pressure and diffusion contributions we use the 
standard variational formulation for second-order elliptic equations of the Helmholtz 
type. These equations are the result of the fractional method employed, as discussed 
in $2.2. The standard Helmholtz equation can be written as 

i-0 j -0 i 

v2u-Lx2u = 0, (7) 

where u is the unknown and a is the Helmholtz constant. We approximate (7) with 
its variational equivalent, i.e. the solution that minimizes the functional 

r r  

f J J  

where Vij is the discrete gradient operator, Jk is the Jacobian of the transformation, 
and C; denotes direct stiffness summation over elemental interfaces. 

A static condensation algorithm is employed to solve the resulting system 
(Korczak & Patera 1986). This greatly reduces the order of the system, and decouples 
the unknowns a t  the elemental nodes from those in the interior of the element. 

The spectral-element method is a technique particularly appropriate for direct 
simulations of unsteady and transitional flows, owing to its rapid (exponential) 
convergence, good resolution properties, and minimal numerical dispersion and 
diffusion. A typical spectral-element mesh used in our calculations is shown in figure 
2. Very high resolution is placed around the cylinder in order to accurately compute 
the boundary layer. Notice that the cylindrical geometry is represented exactly, as 
isoparametric expansions are employed to map the curvilinear elements onto 

15-2 
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FIGURE 2. A typical spectral-element mesh. Small size elements are used close t o  the cylinder 
t o  obtain high resolution, whereas larger elements are used further downstream. 

standard squares ; the latter represent spectral elements in a ‘local ’ reference frame. 
Therefore, in order to determine the coordinates of all collocation points xii in the 
physical mesh, we first specify the coordinates xij  along all curvilinear boundaries 
according to Chebyshev distribution in arclength. Once the elemental coordinates are 
known, the remaining interior points for each element are determined by deforming 
the local ( T , s )  mesh into its (5, y )  image using ‘uniform strain’ techniques (Korczak 
& Patera 1986). 

The boundary conditions on the computational mesh are taken to be uniform 
oncoming flow, potential flow a t  side ‘walls’, no-slip on the cylinder walls, and 
outflow Neumann conditions (&/an = 0, where n denotes normal to the boundary 
direction) a t  the downstream boundary. Various experiments were carried out to 
verify the mesh-independence of the solution, and different boundary conditions at  
the truncation of the infinite domain were employed. In  particular, for the mesh 
shown in figure 2 the order of the Chebyshev polynomials, N ,  was increased from six 
to eight resulting in an increased total number of collocation points from 2744 to 
4536. There was no change in the frequency of the nonlinear response, while the 
amplitude of the oscillation was found to differ less than 1 YO. Simulations using a 
similar mesh to t,hat in figure 2, but twice as wide (forty cylinder diameters wide) 
were repeated for one case of Re = 100, and the frequency was found to decrease by 
1%, while the difference in the amplitude of the oscillations was less than 2%. 
Furthermore, the replacement of Dirichlet boundary conditions at  the sides of the 
domain with periodic boundary conditions had no detectable effect on the solution. 

The time-step is essentially imposed by the numerical stability required for the 
first substep that treats explicitly the advection terms. In most of t h e  simulations 
presented here, the time-step At was equal to  0.018 time-units. Given that for 
Reynolds number Re = 100 the period of oscillation 7 is equal to 11.2 time-units, the 
t’ime-step we have used gives a resolution of 622 time points per period of oscillation. 
All computations were performed in a CRAY X-MP/48. A typical computational 
index for our simulations is 7, = 7 x lop5 in CPU s/(time-step.node), utilizing a 
single processor. This cost is essentially dictated by the static condensation 
algorithm employed to solve the system global matrix for all elemental boundary 
nodes; the operation count is estimated as O(K32V2), where K and N are the number 
of elements and the order of the Chebyshev polynomials used respectively. This cost 
can further be reduced, by using a P-headed processor machine, to an operation 
count of O ( K 2 P ) .  

Last, we note that a similar code as the one employed in the current study has been 
used in many past investigations in which exhaustive comparisons with experimental 
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FIGURE 3. Streamline pattern showing the onset of oscillation a t  Re = 100; 
non-dimensional time t = 72. 

and empirical data have been performed (Karniadakis 1988 ; Karniadakis, Mikic & 
Patera 1988). 

3. Response of unforced wakes 
In  this Section, the development of the vortex street in an unforced laminar wake 

a t  Reynolds number 100 is studied. The uniform flow upstream of the cylinder is 
‘switched-on’ at time t = 0, and then, after a steady periodic state is reached, the 
flow is simulated over a period of time (typically, twenty flow cycles), sufficient to 
obtain reliable estimates of the power spectral density of the velocity fluctuations. 
Computer-aided flow visualizations have been used to study the space-time 
development of the vortex street. The results are discussed below in detail. 

In the early stages of the flow, a quasi-steady separated flow develops, 
characterized by the formation of the ‘separation bubble’, i.e. a region of 
recirculating flow, behind the cylinder. The length of the separation bubble increases 
with time in a manner similar to that a t  subcritical Reynolds numbers (Karniadakis 
1988), but a t  a faster rate. When it reaches approximately the length predicted by 
a steady-flow type of analysis, with forced flow symmetry (Fornberg 1985), the onset 
of an oscillation can be seen through the breaking of symmetry of the flow (figure 3). 
From there on, the oscillation grows in time and spreads in space, leading eventually 
to the formation of the vortex street. Different stages in the development of the 
vortex street are shown in figure (4a -d ) .  

After the formation of the vortex street, the time-average flow field has been 
computed (figure 5 ) .  The time-average flow field is similar to the initial one, but with 
the important difference that it has a separation bubble of length much smaller than 
the initial one, shown in figure 3. This shows that the average flow field is influenced 
by the development of the vortex street, and is drastically different from the initial 
quasi-steady flow field. The difference can be attributed to the fact that the Reynolds 
stresses produced by the vortex street cause, through increased momentum transfer, 
a higher ‘apparent viscosity’ in the flow, or, equivalently, a lower effective Reynolds 
number. Consistently with this interpretation, the flow behind the cylinder, where 
the vortices are still forming, is less influenced than the flow further away, where the 
vortices have grown to their final size. This can be seen more clearly in figures 6 and 
7 ,  where the time-average velocity profiles a t  different x-locations in the near wake 
before the formation of the vortex street are compared with the ones after the 
formation. The most obvious difference between the two can be seen in the variation 
of the centreline velocity along the x-direction. 
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FIGURE 4. Instantaneous streamlines showing the evolution of the vortex street after 
symmetry is broken. The corresponding times are (a) t = 90; (b) 99; (c) 112.5; (d)  135.5. 

FIGURE 5. Streamlines averaged over one shedding period, a t  Re = 100. A significantly smaller 
wake bubble is shown than the initial one (figure 3) or the computed steady patterns of Fornberg 
(1985). 
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FIGURE 7. Velocity profiles of the average flow at different locations. Curve (a)  z = 2, (b)  3, (c) 4, 
( d )  z = 5. The magnitude of the centreline velocity decreases as z increases. 
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FIGURE 8. Map of lines k, = constant in the w-plane for the profile of the average flow a t  x = 2 and 
Re = 100. Curve (a)  k, = 0, ( b )  -0.40, (c) -0.463. The ‘pinch-point’ lies at the cusp of curve (c). 
Note, St = W J X .  

A linearized stability analysis of the time-average flow has been performed, by 
assuming that the latter is slowly varying in the x-direction. This is supported by the 
form of the velocity profiles in figure 7. The stability of the wake can then be 
analysed separately a t  each location along the wake assuming a locally parallel flow. 
A discussion of non-parallel flow effects, based on a Ginzburg-Landau model, can be 
found in Chomaz, Huerre & Redekopp (1988). The physical character of the wake 
instability has been investigated, i.e. whether the instability is absolute or 
convective. The instability in an infinite medium is termed absolute if any arbitrary 
disturbance grows in time a t  any fixed location in space, or convective if disturbances 
are convected away from the point of excitation leaving the medium undisturbed 
(Bers 1983). Within linear theory, the distinction between the two types of 
instability in a homogeneous medium can be made from the dispersion relation 
D(w, k )  = 0 of the medium, where w is the frequency and k the wavenumber. More 
specifically, the ‘ pinch-point ’ type of double-root of the dispersion relation (Bers 
1983) with the largest imaginary part determines the character of the instability. If 
the latter gives a complex frequency with a positive imaginary part; the instability 
is absolute, and the real part of the pinch-point frequency gives the ‘preferred 
frequency’ of the instability. If the imaginary part is negative, the instability is 
convective. 

The dispersion relation consists of the Rayleigh equation, subject to the condition 
that the perturbation velocity vanishes a t  the ‘sidewalls’ of the domain. The pinch- 
point was determined using the method suggested in Triantafyllou, Triantafyllou & 
Chryssostomidis (1986)’ and Triantafyllou, Kupfer & Bers (1987). I n  this method, 
the complex wavenumber plane is mapped into the complex frequency plane through 
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FIGURE 9. A typical power spectrum (a) and corresponding time trace ( b )  for a point located at 
(z = 2.0; y = 2.0), at Re = 100, without external forcing. Only the shedding frequency, fs, and its 
superharmonics are present in the spectrum. 

the dispersion relation; the location of double roots of the dispersion relation can 
then be identified through the similarity of the map to the mapping of the quadratic 
function (figure 8). The requirement that the double root be of the pinch-point type 
can be verified from the location of the double root relative to the map of the k-real 
axis in the complex frequency plane. The latter, curve ( a )  in figure 8, is intersected 
by the line perpendicular to the w-real axis passing through the double root only once. 
Consequently, the reverse mapping of this vertical line into the k-plane through the 
dispersion relation will intersect the reverse mapping of curve ( a ) ,  i.e. the k-real axis, 
only once, satisfying the ‘pinching’ condition (Triantafyllou et al. 1987). 

The average flow is absolutely unstable over a region of approximately 5 radii 
behind the cylinder; the rest of the wake is convectively unstable. Therefore, the 
absolute instability of the average flow in the near wake sustains the vortex street, 
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FIGURE 10. Power spectrum (a) and time trace ( b )  for natural shedding a t  Re = 100 showing a 
periodic state. The point traced is located a t  (z = 20; y = 2.0), close to the point where Sreenivasan 
(1985) reported chaotic behaviour. 

as found by Triantafyllou et al. (1986) by analysing the stability of the experimentally 
measured average flow behind circular cylinders a t  representative Reynolds numbers. 
The quantitative agreement between the numerical calculation and the stability 
analysis is excellent : the Strouhal number predicted by the direct simulation is equal 
to 0.179, and the 'natural frequency' found from the stability analysis of the 'most 
unstable profile', located a t  z = 2, also gives a value equal to 0.179 (figure 8).  We 
note that the instability of the most unstable profile (z = 5 )  of the initial average 
flow, before the establishment of the vortex street, predicts a Strouhal number equal 
to 0.13, which accurately describes the oscillation frequency in the initial stage of the 
flow only. Consequently, we can conclude that the initial quasi-steady flow, which 
initiated the formation process, has been lost from the picture. It is the absolute 
instability of the final average $ow that sustains the oscillation in the wake, by 
feeding energy into it in the near wake. The success of the linear theory, may be 
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attributed to the fact that the velocity fluctuations about the average value are 
relatively small; this can be verified from the time traces in figures 9(b) and l O ( b ) .  
In  the near wake (figure 9 b ) ,  the fluctuations are about 8 %, and in the far wake (figure 
l ob )  11 % of the free-stream velocity. 

For Reynolds number equal to 100, Roshko's (1954) empirical formula gives a 
Strouhal number equal to  0.167. The Strouhal number predicted by our numerical 
calculation is thus higher than the experimental one by about 8%. In order to 
investigate this discrepancy, we first tested the accuracy of the calculat>ions by using 
a spectral-element mesh with much higher resolution ; the new mesh yielded the same 
results. We thus concluded that for the computational domain shown in figure 2 our 
calculations were accurate ; this is further supported by the excellent agreement 
obtained with the results of the stability analysis of the time-average flow. Next, in 
order to investigate the effect of the size of the domain on the value of the Strouhal 
number, we repeated the calculation with a different mesh, twice as wide as the one 
in figure 2. In  the new calculation, the Strouhal frequency was reduced by 2%. The 
disagreement between our numerical computations and Roshko's (€954) experiments 
can, therefore, be partly attributed to the truncation of the computational domain 
in our numerical simulations, which causes an increase in the Strouhal number 
(Chilukuri 1987). However, errors may be present in the experimental measurements 
too, introduced by the three-dimensionality of the flow ; this has been pointed out by 
Friehe (1980), who has shown that the Strouhal frequency is reduced significantly as 
the aspect ratio (cylinder length/cylinder diameter) decreases. We also note that our 
computed value of the Strouhal number is in total agreement with the one computed 
by Gresho et ab. (1984) using a finite-element method. 

FIGURE 11. Plot of the relationship between the Strouhal and Reynolds numbers for the natural 
shedding response. No discontinuities are shown in the curve, contrary to the experimental results 
reported, first, by Tritton (1959). 
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The vortex street a t  Reynolds number 100 is an almost harmonic oscillation, as 
attested by the time trace and the power spectral density of the velocity fluctuations. 
This can be seen in figure 9(a, b ) ,  for the point, with coordinates (z = 2, y = 2) in the 
near wake, and in figure 10 (a, b)  for the point (x = 20, y = 2) in the far wake ; for both 
points the velocity component in the x-direction has been analysed. The point at  the 
far wake has been chosen close to the location where chaotic behaviour was reported 
by Sreenivasan (1985), a t  a Reynolds number lower than ours. No evidence of chaos 
can be detected in our results (we tested several other locations along the wake, not 
shown here). In that respect, our simulations support the conclusions of Van Atta & 
Gharib (1987), that the asymptotic state in unforced laminar wakes is always 
periodic. 

Based on our results about the frequency selection process in laminar wakes, 
discontinuities in the relationship between the Strouhal and Reynolds numbers of 
the two-dimensional Jlow, as found by Tritton (i959) seem unlikely ; as a further test, 
we calculated the unforced response of the wake for several Reynolds numbers 
ranging from 40 to 250. The numerical results (figure i l ) ,  show indeed a continuous 
variation of the Strouhal number with the Reynolds number. 

4. Response of forced wakes 
4.1. Asymptotic states 

In this section the forced response of the wake to a time-harmonic forcing is 
investigated. Within linear theory, an absolutely unstable flow, like the wake of the 
cylinder, is not receptive to external forcing : the naturally produced instability wave 
grows exponentially in time, whereas the forced wave is oscillatory in time. As a 
result, the naturally produced wave becomes exponentially larger than the forced 
wave and completely dominates the response. This conclusion, however, is only valid 
if the amplitude of the forcing is infinitesimal. Finite-amplitude forcing can make its 
presence felt through nonlinear effects. There is therefore a ‘threshold amplitude ’ 
above which the forced wave becomes visible, as found experimentally by Koopmann 
(1967) for the low-Reynolds-number wakes behind vibrating cylinders (see also the 
discussion in Berger & Wille 1972). Once the ‘threshold amplitude’ has been 
exceeded, the naturally produced periodic state may lose its stability, leading to the 
development of non-periodic states. The response states resulting from a time- 
periodic forcing at an amplitude larger than the ‘threshold’ are discussed in this 
section. 

The forcing used is an acceleration harmonic in time and localized in space, 
described by the equation 

F(x,y, t )  = A  cos(2xfet)exp( - & ( ( ~ - 2 ) ~ + y ~ ) ) ,  (9) 

where A is the amplitude of the acceleration and f, is the frequency. The idea behind 
the choice of this type of forcing was to simulate the localized excitation provided by 
an active control device in the near wake of the cylinder, like, say, a thin vibrating 
wire. The vibrating wire provides such a forcing through its added-mass effect : the 
fluid particles adjacent to the wire acquire an acceleration equal to that of the wire; 
further away from the wire, the acceleration of the fluid particles is gradually 
reduced to  zero. Thus the forcing of the vibrating wire is simulated, a t  least 
qualitatively, by (9). Furthermore, vibrations of the cylinder give rise to a similar 
forcing. If we formulate the problem in a frame of reference that moves with the 
cylinder, we obtain the Navier-Stokes equations with a forcing equal everywhere to 
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FIGURE 12. Power spectrum (a) and time trace (b )  of forced response at fe = 0.75f, at a near- 
wake point (z = 2.0; y = 2.0) : periodic lock-in state. 

the acceleration of the cylinder (with a minus sign). The forcing in (9) can therefore 
alternatively be thought of as spatially truncated version of the forcing caused by the 
cylinder vibrations. 

The amplitude, A ,  of the forcing in (9) is kept constant (equal to 0.10), whereas the 
frequency f, is varied, from one half to three times the natural shedding frequency. 
For each case, the unforced response is used as initial condition, and the computation 
is carried on until an asymptotic state is reached; the frequency content of the 
response is then determined by calculating the power spectral density of the velocity 
fluctuations a t  various locations along the wake. The forcing function in (9) attains 
its maximum at the point (z = 2, y = 0) in the near wake, and provides a forcing of 
significant value throughout the near wake, a condition that we found necessary for 
the effectivenes of any localized forcing. Consequently, the forcing excites a wave in 
the near wake that competes with the naturally produced one. The final state of the 
wake results from the interaction of these two waves, and depends on their 
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FIQURE 13. Power spectrum (a )  and time trace ( b )  of forced response for f, = 1.85fS in the near 
wake : quasi-periodic state with peak frequency f,. 

comparative importance. By varying the frequency f, over the receptivity range of 
the wake, the possible response states can be identified. 

Our results demonstrate that, depending on the dominant frequency of the 
response, there can only be two possible response states in the wake: (a)  a lock-in 
state, in which the dominant frequency equals the excitation frequency, or ( b )  a non- 
lock in state, in which the dominant frequency equals the natural shedding 
frequency. The time trace and power spectral density of a lock-in state are shown 
in figure 12(a, b )  for the near wake, corresponding to  an excitation frequency f, = 
0.75fs. The lock-in state is similar to the unforced one, in that the spectral density 
peaks only a t  the dominant frequency and its superharmonics, although the latter 
are considerably more pronounced than in the unforced state. Spectra plots and time 
traces obtained a t  several other points along the wake show the same pattern. 
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FIGURE 14. Power spectrum (a )  and time trace ( b )  of forced response atf, =f, = 1.15f, in the near 
wake. The length of the time signal is 343.80 time units. A sudden broadening of the spectrum and 
loss of periodicity in the trace coincides with the appearance of two equal peaks at frequencies f, 
and f,. 

I n  a non-lock-in state, the dominant frequency equals the natural shedding 
frequency ; several other frequencies, however, may also be present, resulting from 
the nonlinear interaction between the natural and the forced waves. In  figure 
13(a, b)  the time trace and power spectral density of the response as shown for the 
near wake for an excitation frequency f, = 1.85 f,. The dominant peaks occur a t  the 
natural shedding frequency and its superharmonics, although the presence of some 
other, rather weak, peaks can also be seen. As f, is reduced towards fs, the peak of 
the spectral density at f, becomes more and more pronounced, with the number 
of peaks also increasing, indicating distribution of energy over a larger number of 
modes. 
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FIGURE 15. Power spectrum (a) and time trace of forced response at f, =f, = 1.15fS in the far 
wake. The spectrum contains a very large number of peaks. The peak at the natural frequency 
slightly exceeds the peak at f,. The signal analysed was 343.80 time units long, recorded after all 
transients had disappeared. 

From the results presented so far, we can expect that the boundary frequency, f,,, 
separating the two different responses should be characterized by the presence of 
two equal peaks of the spectral density, at f, and f,. This is very nearly achieved at 
the near wake when f e  = 1.15 f,, as shown in figure 14 (a ,  b ) ,  where the power spectral 
density and time trace at  the near wake are shown ; for the far wake they are shown 
in figure 15 (a, b) .  At this excitation frequency, the overall form of the power spectral 
density is indicative of a low-order chaotic response. A unique feature of the response 
at this excitation frequency is that the vortex-shedding frequency is not constant, but 
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FIGURE 16. Magnified plot of the time trace at the far-wake point, showing it continuous variation 
of the frequency from the natural frequency f, to the excitation frequency f,. 

varies between f, and f, (figure 16). Vortex shedding a t  alternating frequencies at the 
boundary of the lock-in state has been observed experimentally by Stansby (1976), 
for the similar problem of a mechanically vibrated rigid cylinder in steady flow. More 
recently, Van Atta & Gharib (1987) have shown that chaotic states in laminar wakes 
are characterized by a ‘mode uncertainty’ behaviour : the spectra of short-time 
signals from the wake taken a t  different times exhibit different dominant frequencies 
(figure 11 in Van Atta & Gharib 1987); this behaviour is the same as the one we 
report here. From our results i t  follows that when the excitation frequency fe is 
slightly lower than fb, the peak of the spectral density plot a t  f, slightly exceeds the 
one a t  f,. This is actually the case for the near-wake spectrum of the forced response 
at l.lSf, in figure 14(a) .  Conversely, when fe is slightly higher than fb, the peak at  f, 
exceeds the one at f,. This is the case for the far-wake spectrum of the same response 
(figure 15a). This implies that  the exact value of the boundary frequency fb varies 
along the wake, and, consequently, that transition between the two different types 
of response occurs for slightly different frequencies at different locations in the wake. 
A narrow frequency range is thus defined over which the wake develops a chaotic 
response. For excitation frequencies inside this range, the distinction between lock- 
in and non-lock-in breaks down, since lock-in and non-lock-in states coexist at 
different parts of the wake. This further supports the concept of ‘mode uncertainty’ 
in the wake. 

For excitation frequencies outside this range, a more ordered response is recovered. 
Thus, for fe = l.ZOf,, a quasi-periodic non-lock-in state is established, with a 
spectral-density plot that  still shows a fairly rich frequency content (figure 17). In 
figure 18, the spectral density for f, = 1.4Of, is shown, which is indicative of an even 
more ordered motion. For frequencies below fb, a periodic lock-in state is quickly 
established; this can be seen in figure 19, corresponding to  f, = l . lOf ,  (although some 
low-frequency modulation can still be detected). For fJf, between 1.10 and 1.15 
intermediate types of response develop. Consequently, transition from lock-in to 
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FIGURE 17. Power spectrum of forced response at f, = 1.20 f,. Although the spectrum is still rich 
in frequency content, the response is ordered, unlike the one obtained whriif, = 1.15fs. 
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FIGURE 18. Power spectrum of forced response at f, = 1.40fS. As the excitation frequency 
further deviates from the ‘transitional ’ frequency f,, the response becomes more ordered. 
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FIGURE 19. Power spectrum corresponding to a periodic lock-in state; f, = i.lOf,. 

non-lock-in states as a function of thc excitation frequency occurs in a continuous, 
even though fast, manner. 

Finally, when the excitation frequency exceeds the value of 2fs, the effect of the 
excitation frequency on the response spectrum becomes negligible. This indicates 
that, for the amplitude used in our calculations, the upper end of the receptivity 
region of the wake is reached. No attempt has been made to determine precisely the 
lower end of the lock-in and the receptivity region, owing to the high cost of low- 
frequency computations. A qualitatively similar behaviour is anticipated. 

4.2. Phase-plane analysis 
The different responses have been analysed using phase-plane techniques. If we 
think of the cylinder wake as a high-order autonomous system under forcing, phase- 
space analysis can be used to characterize its response. In  order to obtain a 
geometrical picture of the system response we ‘projected’ the trajectory of the 
system onto the two-dimensional space defined by two arbitrary independent state 
variables of the system. The two independent quantities that we selected are the 
streamwise and the vertical components of the velocity vector a t  the point (x = 2.0; 
y = 2.0). This point lies in the near wake close to  the upper row of vortices of the 
vortex street. The choice is consistent with our finding that the state selection occurs 
in the near wake. 

Periodic states are characterized by a limit-cycle type of behaviour in the phase 
plane, i.e. a closed trajectory traced continuously in time. Such a behaviour is 
demonstrated in figure 20 for a periodic lock-in response, corresponding to excitation 
frequency f, = 1.10 f,. At the boundary frequency, f,, = 1.15 f,, the trajectory becomes 
aperiodic, indicative of strange (chaotic) behaviour, as shown in figure 21. This plot 
can be compared with the chaotic pattern discovered by McLauglin & Orszag (1982), 
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FIGURE 20. Phase portrait of the lock-in state at f, = 1. lOf,. This state marks the boundary 
between pure lock-in limit cycles and modulated lock-in responses. 

FIGURE 21. Phase portrait of the transitional state at f, =f, = 1.15fS. Similar portraits were 
obtained for very high-resolution simulations verifying that  this response is independent, of t,he 
discrete properties of the system. 
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FIGURE 22. Phase portrait corresponding to a quasi-periodic state (figure 17).  

shown in their figure 10. For fe = l.2fs, a more ordered state is recovered, 
characterized by a quasi-periodic orbit (figure 22). Finally, a t  even higher f,, limit- 
cycle behaviour is eventually recovered. 

4.3. Spatial structure 
Phase-plane type of analysis of flow patterns, although very useful in the 
identification of the temporal development of the flow, does not reveal anything 
about its spatial structure. The spatial structure deserves separate consideration, 
because it is also characteristic of the state of the flow. In  this Section, an attempt 
is made to relate the spatial structure of the wake to the state of the flow. This is done 
by looking a t  the wavelength of the vortex street for three representative response 
states. 

I n  the unforced wake, the wavelength of the vortex street varies slowly along the 
wake, as shown in figure 23 ( a )  ; the wavelength is equal to, approximately, 5 cylinder 
diameters in the near wake, and is slowly decreasing downstream, in the far wake. 
In periodic non-lock-in states, the same spatial structure of the vortex street is 
observed. In  periodic lock-in states, however, the wavelength of the vortex street 
changes, and can become quite different from that of the unforced state. This can be 
seen most clearly for the case f, = 0.75fs : the wavelength at the near wake is equal 
to 7 cylinder diameters, as shown in figure 23(b) ,  corresponding to an increase of 
about 40% over the natural state. A similar change in the spatial structure of the 
vortex street is observed in all periodic lock-in states considered. Interestingly, the 
phase velocity of the vortex street, defined as the ratio of the dominant frequency in 
the wake over the wavenumber a t  each location in space, remains approximately the 
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FIGURE 23. (a) Instantaneous streamlines at Re = 100 for natural shedding. The wavelength of the 
vortex street is approximately five diameters. (b )  Instantaneous streamlines at Re = 100 and 
excitation frequency, f, = 0.75f, (a lock-in state). The wavelength of the vortex street is 
approximately seven diameters. ( c )  Instantaneous streamlines at the transitional state, f, = 
1.15fS. Note the very different spatial structure compared to (a )  and (6). 

same as in the unforced state. Given that the phase velocity is equal to the 
propagation speed of the cores of the vortices, this result confirms that, in lock-in 
states, a periodic vortex street exists locked-in to the excitation frequency. It also 
implies that periodic lock-in states in the laminar wake are non-dispersive. 

Finally, when chaotic states are excited, the wavelength of the vortex street varies 
significantly along the wake, before a constant value is established far behind the 
cylinder (figure 23c) .  The substantial variation of the spatial structure along the 
wake is consistent with the fact that the response states differs from location to 
location. 
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5. Discussion 
The results obtained in $83 and 4 suggest the following picture for the development 

of the response of laminar wakes. In  unforced wakes, the vortex-street formation 
involves two stages. First, a quasi-steady separated flow develops, similar to that 
obtained for steady-state simulations by Fornberg (1985). Subsequently, unsteady 
effects appear, as a result of the instability of the separated flow, and lead to the 
formation of the vortex street. The frequency of the vortex street is however 
determined by the absolute instability of the final time-average flow (Triantafyllou 
et al. 1986)) whereas nonlinear effects determine the amplitude of the oscillation. The 
vortex street is an almost perfectly periodic limit cycle, the frequency of which is a 
continuous function of the Reynolds number. 

In forced wakes, the final, asymptotic state develops from the interaction between 
two competing patterns, the naturally produced wave, and the forced wave. In the 
non-lock-in region, the absolute instability of the wake is still the dominant factor in 
the frequency and state selection process. In this region, the nonlinear interaction 
between the two patterns plays only a secondary role, which, however, becomes 
increasingly important as the excitation frequency f, approaches the boundary 
frequency fb. In periodic lock-in states, on the other hand, like the one shown in 
figure 12 (a ,  b) ,  a completely reverse picture of the state selection process appears : 
while the time-average flow is very similar to the flow in the unforced state, 
indicating that the ‘ natural frequency ’ of the flow has not been significantly altered, 
the frequency and wavelength of the vortex street are very different. This shows that 
lock-in states result from a purely nonlinear interaction between the two competing 
patterns, the outcome of which is the complete synchronization of the vortex street 
with the imposed forcing. 

As f, approaches fb, an intermediate situation develops, in which the two selection 
processes (the instability mechanism and the nonlinear interaction) become of 
comparable importance. The response in this case is characterized by a richness in 
frequency content and relatively broadband spectral densities. In a very narrow 
range around the boundary separating the two regions, the two competing patterns 
create a chaotic response. Consequently, the appropriate scenario describing the 
development of chaos in laminar wakes is not the RTN scenario, as suggested by 
Sreenivasan (1985), but the ‘pattern competition ’, proposed by Ciliberto & Gollub 
(1984) in the context of a different physical problem. 

At this point, we would like to note the similarity between our computed spectral 
densities, and those resulting from the undamped-cylinder experiments of Van Atta 
& Gharib (1987). Our results suggest that the rich, but not chaotic, spectra measured 
in their experiments correspond to vibrations of the cylinder in the non-lock-in 
region; the chaotic spectra occur for vibrations a t  a frequency very near the 
boundary frequency fb. Overall, our results are in total agreement with the 
conjecture of Van Atta & Gharib (1987) that quasi-periodic and chaotic states appear 
in laminar wakes only in presence of an external forcing. Our contribution in this 
respect is in identifying the precise manner through which a simple harmonic forcing 
can excite quasi-periodic and chaotic states. 

The classification of states as a function of the frequency and amplitude of 
excitation can be simply summarized in a state diagram as follows. For a given 
amplitude, we can distinguish four important frequencies for the system, which mark 
the transition between different flow states: the upper and lower boundaries of the 
lock-in region (R and f f ,  respectively), and the upper and lower boundaries of the 
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A Lock-in boundary 

FIGURE 24. State-selection diagram for laminar wakes. The plot should only be interpreted in a 
qualitative sense. Such regions are referred to in the literature as ‘resonant horns’ (Arnol’d 
1977). 

receptivity region (R and f,?). Between the first two frequencies only lock-in states 
are obtained. Between the lock-in boundary and the corresponding receptivity 
boundary quasi-periodic non-lock-in states develop. Outside the receptivity region, 
periodic non-lock-in states, virtually the same as the unforced one, are recovered. 
Chaotic states develop in a very narrow frequency range around the boundaries of 
the lock-in region. The extent of the lock-in and receptivity region is amplitude 
dependent. Both regions are reduced when the amplitude is reduced, and they shrink 
to zero when the amplitude tends to the threshold amplitude, A,, required for the 
excitation to be ‘felt ’ by the wake (see also the discussion a t  the beginning of $4). For 
an amplitude of excitation equal to A,, the wake responds only when the excitation 
frequency f, is equal to the Strouhal frequency f,. Based on these observations, we 
can sketch the complete form of the state-selection diagram in the frequency- 
amplitude plane, shown in figure 24. The receptivity and lock-in regions have 
the form of inverted triangular regions, one inside the other, based on the point 
( A  = A, , f ,  = f,). This state-selection diagram also represents the stability properties 
of the naturally produced periodic state. Outside the receptivity region, disturbances 
are unable to perturb the state of the wake, which can therefore be termed as 
‘stable ’. Inside the receptivity region, however, the periodic state loses its stability, 
giving rise to quasi-periodic and chaotic states. The inner part of the region is 
referred to in the literature as ‘resonant horn ’ (Arnol’d 1977). Similar state-selection 
diagrams have been found in periodically forced chemical systems (Kevrekidis 
1987). 

The diagram of figure 24 gives only a qualitative summary of the response states 
of the wake ; an exact quantitative diagram is prohibitively expensive, requiring a 
large amount of computation. Furthermore, we note that the proposed state- 
selection diagram is valid for finite, but small, amplitudes. For large amplitudes the 
response may change drastically from the results reported here : for example, 
additional resonant horns based on subharmonics of the Strouhal frequency may 
appear; Stansby (1976) has observed that the wake of vibrating cylinders (at high 
Reynolds numbers) locks-in to frequencies equal to one-half and one-third of the 
Strouhal frequency. Also, high-amplitude forcing at the Strouhal frequency has been 
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shown to cause a complete change in the shedding pattern, i.e. shedding of symmetric 
vortices at  twice the Strouhal frequency (Karniadakis et al. 1986). 

An investigation, currently underway, regarding the state selection in the wake of 
cylinders oscillating transversely to a steady flow, shows a qualitatively similar 
behaviour with the one discussed in this section. This further justifies the use of the 
forcing in the form defined by (9). Preliminary calculations in this case support the 
results presented here ; the regions of state transition are quantitatively different, 
since the extent and magnitude of excitation are different. In particular, some of the 
lock-in states described in $4.1 were verified as remaining unchanged in the case of 
a vibrating single cylinder, as well as in the case of an array of vibrating cylinders 
placed perpendicular to an oncoming uniform flow. Results for these last two cases 
will be presented in a future publication. 

Before concluding this Section, it is worth discussing whether phenomena of pure 
fluid-mechanical origin can produce the same result as the forcing used in our 
calculations. Our results in $3  exclude this possibility for the Reynolds-number 
regime 0 to 250. At  higher Reynolds numbers, however, (e.g. Re > 2000) a second 
pattern may be present, resulting from the instability of the separated shear layer, 
which introduces a new frequency ft (Bloor 1964). The interaction of this second 
pattern with the vortex street has been found by Kutta et al. (1987) to cause locally 
chaotic behaviour in the near wake of the cylinder. The question then is whether this 
chaotic behaviour can be explained based on the scenario we have presented here. 
Let us assume that the oscillation of the fluid particles caused by the shear-layer 
instability can be modelled as an external forcing similar to the one defined in (9). 
Then, given that the frequency of this second pattern is about five times the Strouhal 
frequency, the excitation provided by the shear-layer instability lies outside the 
receptivity range of the wake, and cannot produce chaotic behaviour according to 
the scenario proposed here. Consequently, the chaotic behaviour reported by Kurta 
et al. (1987) is not produced as a result of ‘pattern competition ’, but is following some 
diferent route, possibly the RTN scenario. 

6. Conclusions 
Identification of states in ‘open ’ flow systems is closely related to flow-control 

problems. One may think, for instance, of the forcing used in the present investigation 
as loosely representing some ‘active control device’. The performance of such a 
device can be assessed from the final asymptotic state of the flow. Thus, given the 
state-selection diagram, the following observations can be made. 

If cancellation of the vortex street is desired, like in vibration suppression 
applications, active control devices are ineffective. Owing to the absolute instability 
of the flow, a large-scale unsteady pattern (vortex street) is always formed. For such 
applications, therefore, modification of the average flow, such that a convectively 
unstable wake (no spontaneous unsteady pattern) is obtained, seems a possible 
alternative. 

If reinforcement of the vortex street is desired, like in transport enhancement 
applications, active control devices can be very effective. Flow destabilization 
through resonant forcing at the Strouhal frequency is known to cause dramatic 
improvements in transport rates (Karniadakis et aE. 1986). The discovery that 
chaotic states can develop in the wake offers a new possibility for transport 
enhancement : driving the wake at  frequencies capable of creating chaotic states, 
rather than the Strouhal frequency, in order to exploit the richness of time and 
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length scales that  are present in chaotic states. Investigation of this transport 
enhancement mode, termed ‘chaotic advection ’ by Aref (1984), is currently 
underway. 
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